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1.1 INTRODUCTION

Graphs are used in Computational Biology to model the @latiips between bi-
ological entities. For example, experimentally deterrdipeotein interactions are
commonly represented by a graph, the so-caledein interaction networkwhere
proteins are nodes and every pair of interacting protei®isected by an edge.
Even though such a representation may not capture all thpleaity of protein inter-
actions in underlying biological processes, the study efttpological properties of
these networks has become an important tool in searchirggfoeral principles that
govern the organization of molecular networks. For exafpipleas observed that in
protein interaction networks some types of small-size storks are much more
abundant than would be expected by chance [53]. The disg@fe¢hese overrep-
resented subnetworks network motifdas led to investigation of their information
processing properties [64] and network evolution mechasthat could account for
their emergence [52]. Usage of graph theoretical tools tdimited to the study
of protein interaction networks, graphs are also used toahmetabolic networks
(processes), gene co-expression, gene co-regulatiolngsmnjes, etc.

In general, graphs are not required to have any type of ragul@his makes them
very flexible combinatorial objects, which are able to repré complex and diverse
relationships. In practice, however, graphs that modélwead phenomena often
belong to families of graphs with a special structure, witiah be exploited to gain
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an insight into the phenomenon that generated the graphlafifyahis statement
we start with a following toy example taken from everydag lif

Example: Elenadecided to walk 40 miles to raise funds for an impotanse. Her
friends provide her with support by walking along her, butteaf them walks only for
10 miles (see Figure 1.1(a)). Her husband, Julian, volusteedocument the event
and takes a group picture every time a new supporter joinsaHkee Figure 1.1(b)).
After the event is completed Julian handles Elena a box witbtggraphs. Elena
notices that the pictures are not ordered and then she lgrtnkilian lost somewhere
the film. Can she reconstructthe order her supporters joieagalk without the film,
i.e., can she use the information in Figure 1.1(b) to tell tea friends joined the walk
in the following order (Merrick, Nilani, Dami, Teresa, Rafraveen)? If Julian had
lost the film before developing it (so Elena does not have hecipus pictures) but
her supporters remember their walking partners, howewsrdo not remember the
order in which these partners joined, would she still be tthieconstruct the history
of events? Interestingly, if except for the very beginnimgl aery end she never
walked alone and remembers a person who supported her frstashreconstruct
this order: in the first case she would be able to recover tieramompletely; in the
second case she still would be able to reconstruct the oxdepefor the relative
placement of Dami and Teresa; she would not be able to telthehéami joined
the walk before Teresa or the other way around.

Inthe example above, Elena exploits the special strucfuhesupporters overlap
graph in Figure 1.1(c) to understand the “real world phenuong, the participation
of her friends in the fund raising event in Figure 1.1(a). §n&ph in Figure 1.1(c)
is aninterval graph meaning that there is a set of intervals on a real line suah th
vertices of the graph are in one-to-one correspondencehégtinmtervals in the set and
there is an edge between a pair of vertices if and only if theesponding intervals
intersect; the set of intervals is callediaterval representatioof the graph. Interval
graphs are a special caseintiersection graphsgraphs whose vertices are in one to
one correspondence with a family of sets such that theregslga between a pair of
vertices if and only if the corresponding pair of sets havera-empty intersection.
Coming back to our example, the supporters overlap graphgar& 1.1(c) is an
interval graph with one possible interval representatimws in Figure 1.1(a). Given
the graph in Figure 1.1(c) Elena won't be able to reconstheshistory of events up
to the smallest detail, such as Merrick joined the walk 8 snilefore Nilani, but she
would be able to tell that all possible valid (Merrick is thesfito join the walk and
everybody walks for exactly 10 miles) interval represdatat of this graph result in
the same order (up to relative placement of Dami and Terddardriends joining
the walk.

In this chapter we will demonstrate how graph theoreticald@re used in Com-
putational Biology to elucidate the dynamics of biologipabcesses. In particular,
we will show applications of the well studied graph familyokam aschordal graphs
Chordal graphs are exactly these graphs that are inteyeegtaphs of subtrees of
a tree, and therefore they include interval graphs whichbzageen as intersection
graphs of subtrees of a path (a degenerate tree). We staravieidckground infor-
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Fig. 1.1 Elena’s story(a) The order in which Elena’s friends, Merrick, Nilani, DamgrEsa,

Raja, and Praveen, join the walk. Each friend is represdnyeah interval showing his/her

stretch of the walk(b) Julian’s pictures. There are six pictures showing the gigeints when

each friend joins the walk(C) The supporters overlap graph: Elena’s friends are nodes and

there is an edge between two friends if they were walkingttogye



mation on graph theoretical tools used to deal with chordablgs (see Section 1.2).
We then proceed to show how these tools are applied to twdearshin Computa-
tional Biology: phylogenetic tree reconstruction (seet®acl.3) and formation of
multi-protein complexes (see Section 1.4). In both apfibce, structure of a certain
graph is exploited (in a manner similar to the toy examplevapto elucidate the
dynamic behavior of the underlying biological process hiafirst application we are
interested in the dynamics of evolution, i.e., the orderlvicl the taxa evolved from
a common ancestor. In the second application we are inéeté@sthe dynamics of
multi-protein complex formation during a biological presesuch as cell signalling,
i.e., how multi-protein complexes are formed during thecess and the order in
which proteins join these complexes.

1.2 GRAPH THEORY BACKGROUND

The purpose of this section is to provide the reader with @magw of relevant graph
theoretic results for chordal, interval, and cograph grigrhilies. We state here
results that are used in the biological applications ofalgraph families discussed
in latter sections. For a thorough treatment of chordal lggsamd interval graphs we
refer the reader to now a classical book by Golumbic [35]ep#xcellent references
are arecentbook onintersection graph theory by McKee arddvids [50], a chapter
“An introduction to chordal graphs and clique trees” by B&id Peyton in [33], and
a set of lecture notes by Shamir [63]. For an overview of $tmat and algorithmic
properties of cographs we refer the reader to the paper bypeiast al. [19];
modular decomposition is surveyed in a paper by Mohring aadeRnacher[54], a
nice overview can be also found in a chapter “Decompositamsforcing relations
in graphs and other combinatorial structures” by McConn¢B6].

We assume that all graphs are undirected and connected.NdedsG = (V, E)
a graph with a set of verticds and a set of edgek. Given a grapltG = (V, E),
a subgrapl’ = (V’, E’) is aninduced subgraplf G if V' is a subset ol and
E’ contains all the edges of the original graph whose both entipare inV’; we
may also say that’ is a subgraph of inducedby V’. For a vertexw € V, we use
N (v) to denote the set afs neighbors inG, i.e., N (v) = {u] (v,u) € E}. We use
“—"to denote set difference operation such that for two $etndY the setX — Y
contains elements that are 1 but notinY".

1.2.1 Chordal Graphs

In a cycle achordis an edge that connects two non-consecutive vertices afytie.
Forexample, acycléa, b, ¢, d} in Figure 1.2(a) has achofdl, d). A chordal graphis
agraph that does not contain chordless cycles of lengthegitisan three; other names
given to graphs having this property aigid circuit graphsandtriangulated graphs
Chordality is ahereditary graph propertymeaning that any induced subgraph of a
chordal graph is chordal.
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A Chordal Graph G=(V,E) Maximal Cligues in G The Clique Graph K(G)
Q1: {a,b,d}
(o) Q2: {b,c,d}
Q3:{d,e}
Q4:{d.B
O)
(a) (c)
A Tree Representation of G A Clique Tree Representation of G
® R1:{1} ® T1:{Q1}
R2:{2,3,4,5} ° @ ! T2: {Q2}
® R3:{1,2,3,4} $ @ @ ° ® T3:{Q1,Q2}
e R4:{1,2,3,6,7} o T4:{Q1,Q2,Q3,Q4}
R5: {6} s T5: {Q3}
o R6: {7} Q) o T6:{Q4}

(e)

Fig. 1.2 (@) A chordal graphG = (V, E). (b) A tree representation df: the tree is on
the left and the family of subtrees is on the right. Every mtR;, is schematically shown
by putting a colored circle next to its nodes on the tree. Karple, R3 is shown by red
circles. (¢) The set of maximal cliques ii. There are four maximal cliques in the graph,
Q1, Q2, Q3, andQ4. (d) The clique graph of7. The clique graph is the intersection graph
of {Q1,Q2,Q3,Q4}. (€)A clique tree representation ¢f: the clique tree is on the left
and the family of subtrees is on the right. It should be noted & clique tree is a valid tree
representation of a chordal graph. Indeed, every vertelxdrgtaph corresponds to a subtree
of the clique tree and two vertices are adjacent if and ontéir corresponding subtrees
intersect.
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In a graph an ordering of verticgs, ..., v, } is aperfect elimination ordering
(PEO) if and only if for every position the subgraph induced by the neighbors of
v; that appear later on in the ordering is complete, i.e., thmaph induced by
N (v;) N {vit1,-..,vn } is complete. For example in the graph of Figure 1.2(a), the
ordering{a, b, ¢, e, f,d} is a PEO while the orderinda, b, ¢, d, e, f} is not. It was
shown by Fulkerson and Gross [26] that only chordal graphseae a PEO.

Theorem 1 (Fulkerson&Gross1965)A graph is chordal if and only if there exists
a perfect elimination ordering of its vertices.

This alternative characterization of chordal graphs isdusg two linear time
chordal graph recognition algorithms [59, 66]. Given a rapoth algorithms
produce an ordering of its vertices which is a PEO if and ohthe input graph is
chordal. Therefore, to determine whether the input grapth@rdal it suffices to
check that the ordering output by the algorithm is a PEO. Tdréest algorithm,
due to Rose and Tarjan [59], usekexicographic Breadth-First SearflbexBFS), a
modified version of the widely knowBreadth First Searclfil 7] algorithm, to order
the vertices of the graph.

A maximal cliquean a graph is a subset of vertices that form a maximal complete
subgraph. Given a graggh, we will useQ((G) to denote the set of all maximal cliques
in G andK (G) to denote thelique graphof G, where vertices o (G) are maximal
cligues inG and there is an edge between a pair of vertices (maximalegigtitheir
intersection is not empty. As an illustration consider thepdp in Figure 1.2(a). This
graph has four maximal cliques, which are shown in Figuréc).Zhe clique graph
K (@) is shown in Figure 1.2(d); it has four vertic€s, Q2, Q3, andQy4, and is
complete as every pair of vertices (maximal cliques) hasraaropty intersection.
(In this case all maximal cliques contain veriéx V' of the original graplG.)

Even though computing all maximal cliques of a general greph difficult
problem [28], all maximal cliques of a chordal graph can bmpoted efficiently.
Moreover, the number of maximal cliques in a chordal grap#t isost|V|. (For
details please refer to Section 4.2.1 in the chapter by BlairPeyton [33].)

Let F = {Ry, ..., R,} be a family of subsets. Thatersection graph ofF is a
graphG = (V, E) whereV = FandE = {(R;, R;)| R;NR; # 0}, i.e., the vertices
of the graph are the subsetsirand there is an edge between two vertices (subsets) if
their intersection is not empty. It can be shown that eveaphris isomorphic to the
intersection graph of some family of subsets; the familyutfsets can be thought as
an alternative representation of the graph and is callédtarsection representation
of the graph. A variety of well known graph classes can beattarized by putting
restrictions on intersection representations of graptikénclass. For example, an
interval graphis isomorphic to the intersection graph of a family of clogaervals
on the real line and ehordal graphis isomorphic to the intersection graph of a family
of subtrees of a tree.

Even though the study of chordal graphs goes badis, the characterization
in terms of allowable intersection representations wasrgianly in seventies [68,
31, 13]. In particular, it was established that a graph isrdaloif and only if it is
isomorphic to the intersection graph of a family of subtrefs tree; the tree and the
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family of subtrees are calledteee representationf the chordal graph. Figure 1.2(b)
shows a tree representation of a chordal graph in Figur@)l.2oreover, it was
shown that every chordal gragh = (V, E') has a special tree representation, the
so-calledclique tree representatigrin which the tree is a spanning tree &f(G)
and the family of subtree& = {7, | v € V'} is defined by setting each, to the
set of maximal cliques that contain For example, Figure 1.2(e) shows a clique
tree representation for a chordal graph in Figure 1.2(a)s iBhsummarized in the
following theorem:

Theorem 2 (Walter1972, Gavril1974, Buneman1974) etG = (V, E) be agraph.
The following statements are equivalent:

1. G is a chordal graph.
2. G isiisomorphic to the intersection graph of a family of subtref a tree.

3. There exists a spanning tree of the clique graf{lt7) such that for every € V
the subgraph of this tree induced by the set of maximal ciquatainingu,
{Q|Q € Q(G) andv € Q}, is connected.

Given a chordal graph, all possible clique tree represiemstan be efficiently
computed. One approach [7] is based on the fact that clijgestare exactly
maximum weight spanning trees of the clique gr&f(t), where the weight function
on the edges of{(G) is defined as the amount of overlap between two maximal
cliques, i.e.w(Q’, Q") = |Q' N Q"|. Thus, in order to compute all possible clique
tree representations of a chordal graph, one simply neectsmpute all maximum
weight spanning trees of the clique gra§iG), for example by using an algorithm
from [32]. Another approach [39] builds on a connection lestw the edges of a
cligue tree of a chordal graph and the set of minimal vert@asstors in the graph.

Given a graphG = (V, E) not necessarily chordal, one is often interested in
finding a set of edgeB’ such that addition of’ to the graph makes it chordal; the
set of edges that does the job is callettiangulationof G. As a complete graph
is chordal by definition, any graph can be trivially trianatield by settingz’ to be
the set of all non-edges in the grapfi, = (V' x V) — E. One may further ask
for a triangulation that possesses additional propert#éeminimal triangulationof
a graph is a triangulation that is not properly containedriy ether triangulation.
A minimal triangulation can be found efficiently [59] usingvariant of LexBFS
algorithm for recognition of chordal graphs. Minimum triangulatiorof a graph is
the triangulation with the smallest number of edges. Eveagh finding a minimum
triangulation of a graph is a difficult problem [71], there fixed-parameter tractable
solutions [14, 45]. For example, an algorithm in [14] taKlz(s(ﬁk)g/zﬂW +|E)))
to find a minimum triangulation ofr = (V, E) whenG has a triangulation whose

size does not excedd Therefore, if the size of minimum triangulation is small it
can be found efficiently.
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1.2.2 Interval Graphs

Aninterval graphis any graph that is isomorphic to the intersection graphfafraly

of intervals on a real line; the family of intervals is calladerval representation
or sometimes ainterval realizerof the graph. Not every graph has an interval
representation; consider for example a chordless cycength four. The "invention”
of interval graphs is commonly attributed to the Hungariaatinematician Gyorgy
Hajos who in 1957 posed the problem of characterizing tislfeof graphs. Interval
graphs also appear in the work of the American biologistsy®ey Benzer [6] who
used them to support his hypothesis that genetic mateafjanized into a structure
having linear topology.

The first linear time algorithm for recognizing interval ghes is due to Booth and
Leuker [11]. In their paper the authors show how to test wiedhfamily of subsets
of some ground sdt/ has aconsecutive onesroperty, meaning that the members
of the family can be linearly ordered in a way such that forgwdement inU the
subsets containing it are consecutive in the linear orddrerdfore, according to
the theorem below, an interval graph is recognized by tgstinether the set of its
maximal cliques has a consecutive ones property.

Theorem 3 (Gilmore&Hoffman1964) A graph is an interval graph if and only if
its maximal cliques can be ordered in a linear fashion suctt for every vertex in
the graph the set of maximal cliques that contain it is contee.

The above characterization implies that interval graplesciiordal. Indeed, if
maximal cliques of a chordal graph can be arranged in a teseaximal cliques
of an interval graph can be arranged on a path. Therefoeyadtgraphs are exactly
these chordal graphs that have a clique tree representehich is a path.

Ina graphG = (V, E) an ordering of vertice$v, ..., v, } is aninterval ordering
(I-ordering) if and only if for every pair of positions< j the following holds: if
(vi,v;) € E then(v;,v) € E for everyi < k < j. Recently another linear time
algorithm for recognition of interval graphs was propos&d][ which utilizes the
fact that only interval graphs can have an l-ordering. Thénndea is to use a
multi-sweep LexBFS algorithm to produce an ordering of thetiges of a graph,
which is an I-ordering if and only if the input graph is an ini&l graph.

1.2.3 Modular Decomposition and Cographs

A modulein a graphG = (V, E) is a set of verticesX, that have exactly the same
set of neighbors i — X, i.e., for every pair of verticeg andv in X the following
holdsA (u) N (V — X) = N(v) N (V — X). For any vertex, the sef{v} trivially
satisfies the requirement for being a module and so doestloé @& vertices in the
graph,V; these sets are callédvial modules

A graph that only has trivial modules @ime for example, the graph in Fig-
ure 1.3(a) is prime, while the graph in Figure 1.3(b) is notdk-prime graph will
have other modules in addition to the trivial modules. Twaloles in a graplver-
lap if they share vertices but neither module properly cont#iesother. A module
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Fig. 1.3 (@) A prime graph.(b) A non-prime graph.(c) The modular decomposition tree
of the graph in(a). (d) The modular decomposition tree can be used to derive a Boolea
expression for the maximal cliques in a graph. The corredipgnmodular decomposition
tree. The Boolean expression is constructed by moving aleagree from the leaves to the
root, replacing each "series" node with anoperator and each "parallel" node with &n
operator. The Boolean expression for the cograplb)ris (((a V ¢) Ab) VeV f) Ad.

is strongif it does not overlap any other module in the graph amékotherwise; by
definition trivial modules are strong modules.

The strong modules in a graggh = (V, E) can be organized into a hierarchical
structure where every module is attached to the smallestifatitat containsit. Itcan
be argued that this construction results in a unique treantidular decomposition
tree of the graph, with the trivial modules of the for{w} being the leaves of the
tree, the modulé” being the root, and all other strong modules being the iatern
nodes. The modular decomposition tree of the graph in Fig8€) is shown in
Figure 1.3(c). This graph has eleven modules, all of whiehs&ong.

Even though weak modules of a graph do not directly appeahneénntodular
decomposition tree, it can be shown that every weak modudeusion of strong
modules that are directly attached to the same internal imothee modular decom-
position tree. When this happens the internal node is ldsddegeneratginternal
nodes that are not degenerate are labelegriase Furthermore, the union of any
subset of children of a degenerate node is a module (nedgsgaak). Therefore,
the modular decomposition tree captures all modules in thphg the strong mod-
ules are the nodes of the tree and the weak modules are thesusfichildren of
degenerate internal nodes.

Let X be a module in a grapy = (V, E) represented by internal node of the
modular decomposition tree and &tbe the set of modules that correspond to its
children. Aquotient graprassociated witlX is obtained by contracting every module
in C into one node in the subgraph@finduced byX, Gx. For any pair of modules
Y andY” in C, either all edge¥” x Y’ belong toE or none does(’ x Y')NE = ().
Therefore, the quotient graph associated witbompletely specifies the edgesof
that are not within one module ¢h Moreover, it can be shown that the quotientgraph



associated with a module that corresponds to a degenemdgdseither a complete
graph or a complement of a complete graph. If we label deg¢mandes aseries
whenever the corresponding quotient graph is completganallel otherwise, and
record the structure of quotient graphs associated withgnodes, then the modular
decomposition tree together with this additional inforimatompletely specifies the
structure of the graph.

A complement reducible grapfa cograph) can be recursively defined in the
following manner: (i) a single vertex graph is a cography ifiGy, ..., Gi, are
cographs then so is their uni@®, U G»... U Gy; (iii) if G is a cograph then so is
its complements; A pair of nodes,u andv, in a graph aresiblingsif they have
exactly the same set of neighbors, i&.(u) — {v} = N(v) — {u}. If the nodes
of the pair are connected by an edge, we call tlstnong siblingsandweak siblings
otherwise. The following theorem summarizes some of thecgiral properties of
cographs given in the paper by Corngiilal. [19].

Theorem 4 LetG = (V, E) be a graph. The following statements are equivalent.
e (G is a cograph.
e Every non-trivial induced subgraph 6f has a pair of siblings.

e ( does not contain an induced subgraph isomorphic to a paterafth four
(Ps)-

Cographs are exactly graphs with the modular decompogigenwithout prime
modules. Therefore the modular decomposition tree of aagdgwith the "se-
ries"/"parallel” labeling of nodes provides an alternatigpresentation of the graph.
This representation s closely related to tliéreerepresentation for cographs[19]. In
particular, the modular decomposition tree can be usedrtergée a Boolean expres-
sion describing all the maximal cliques in a cograph andionketicient algorithms
for other otherwise difficult combinatorial problems [19The Boolean expression
is constructed by moving along the tree from the leaves tadbg replacing each
"series" node with am operator and every "parallel" node with &moperator. For
example, Figure 1.3(d) shows how to obtain the Boolean espoa for the graph in
Figure 1.3(b). For a cograph the modular decompositiondagebe constructed in
linear time [20].

1.3 RECONSTRUCTING PHYLOGENIES

Consider a set of taxa, where each taxon is represented i@ oé attributes, the
so-calledcharacters We assume that every character can take one of a finite number
of states and the set of taxa evolved from a common ancestuugh changes of
states of the corresponding characters. For example, tloé tsxa can be described

by columns in multiple sequence alignment of protein segegnin this case each
column in the alignment is a character that can assume omesoty possible states.
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Parsimony methods seek a phylogenetic tree that explagnetiberved characters
with the minimum number of character changes along the biesof the tree.

In our working example for this section the set of taxa inelsi@ight species
shown in Figure 1.4 (a); each species is described by twapiclaaracters. As

there are% unrooted binary trees on labeled vertices [15], there are

215—15', = 10, 395 possible phylogenetic trees for the set of species in oumpia

One such tree is shown in Figure 1.4(b). Once the tree togaoiixed, an optimal
assignment/assignments of the character states to tieahtedes can be efficiently
computed [25]; the assignment of characters in Figurelid(@ptimal for this tree
topology and requires three character changes.

We call a phylogenetic tregerfect phylogenif every character state arose only
once during evolution or in other words the subgraph of the induced by the nodes
having this character state is connected. The phylogetne@ién Figure 1.4(b) is not
a perfect phylogeny as the character stifta the character “intro256” arose twice,
once in the part of the tree defined BgandSp and another time in the part of the
tree defined bypm andAg. Given a phylogenetic tree, the number of changes due
to a specific character is bounded from below by the numbeaiatésthis character
assumes minus one. It is easy to see that the lower boundisvadhonly when
each character state induces a connected subgraph of ¢hentithe phylogenetic
tree of Figure 1.4 (b) the character “intran5” achieves the lower bound, while
the character “intro256” does not. Therefore, a perfect phylogeny is the best tree
in a sense that it achieves this lower bound for every chara€terfect phylogeny
often does not exist and we start this section with an exaofgilew Chordal Graph
Theory can be used to addresstheracter Compatibility Problem: Given a
set of taxa, does there exist the perfect phylogeny for ttie se

When a set of taxa admits perfect phylogeny we say that thexcteais describing
the set ardully compatibleor just compatible The compatibility criteria is quite
restrictive, in the case of intron data, for example, it nee#rat for every intron
the transition from “0” state to “1” state occurred only ortgring evolution. We
conclude this section by showing how Chordal Graph Theornylmused to relax
the compatibility criteria in a meaningful way when taxa described by a set of
binary characters.

1.3.1 Perfect Phylogeny and Triangulating Vertex-Coloredsraphs

From the set of input taxa we can construgbaatition intersection graphin the
following manner: (i) introduce a vertex for every characttate; (ii) put an edge
between two vertices if the corresponding character stteobserved in one or
more taxa together. In our working example the partitiomiisgction graph will
have four vertices| 05 (state “1” of the character “introh05”), —105 (state “0” of
the character “intron05”), 256 (state “1” of the character “intro56”), and —256
(state “0” of the character “introB56”) (see Figure 1.4 (c)). The name “partition
intersection graph” is due to the fact that each characiée sbrresponds to a subset
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Fig. 1.4 A set of eight speciesAnopheles gambia@\g), Arabidopsis thaliangAt),
Caenorhabditis elegan€e), Drosophila melanogastgbm), Homo sapiengHm),
Plasmodium falciparum(Pf), Saccharomyces cerevisig&g), and Saccharomyces
pombe(Sp). (a) The species are described by binary characters which pomesto the
presence (value df) or absence (value @f) of introns. This is truncated data limited to just
two introns (105 and256) out of about7, 236 from the study of Rogoziet al. [58]. (b) A
phylogenetic tree: the leaves are the species in the setrarahbeled with the input character
states; the internal nodes are ancestral species and aledatith the inferred character states.
This particular tree requires three character changeschvete marked with solid bars on the
corresponding edgds) The character overlap graph. There are four vertices, oriexvper
character statd,05 (state “1” of the character “introh05”), —105 (state “0” of the character
“intron 105"), 256 (state “1” of the character “intro256”), and —256 (state “0” of the
character “intror256”). Two vertices are connected by an edge if correspondirayadier
states are observed together in some taxon. The Edyg —256), for example, is due to
speciesAg andDm.
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of taxa, the taxa that have this character state, and thetsubfscharacter states of a
character partition the set of taxa under consideration.

There is an important connection between partition intgige graphs and the
Character Compatibility Problem. Indeed, if a set of taxa admits perfect phy-
logeny then there exists a phylogenetic tree, where for ehahacter state the tree
vertices having this state form a subtree. As there is aniedfe partition intersec-
tion graph between every pair of character states whoseegdihtersect in the leaves
of the phylogenetic tree, this graph is either chordal or lwatriangulated without
introducing edges between vertices that correspond tddhesof the same character.
(Additional edges may be necessary to account for subttersaction which occurs
only at internal nodes of the phylogenetic tree.) The partiintersection graphs
were used by Buneman [13] (in his paper the author referesetgraphs astribute
overlap graph¥to show that th€haracter Compatibility Problemreducesin
polynomial time to theTriangulating Vertex Colored Graph Problem. In
the latter problem we are given a gra@lV, ) and a proper coloring of its vertices,
c:V — Z. Avertex coloring is proper if there does not exist an edg€ whose
endpoints are assigned the same color by the coloring. Wetwaetermine if there
exists a chordal grap@(v E) such thatE ¢ E andG is properly colored by,
i.e., no edges between vertices of the same color were inteatlin the process of
triangulatingG. If such chordal graph exists we say tidatan bec-triangulated.

Theorem 5 (Buneman1974)A set of taxa has a perfect phylogeny if and only if
the corresponding partition intersection graph can dg&iangulated, where vertex
coloring functionc assigns the same color to the character states of the samaatba
and different colors to the character states of differerdrelcters.

Kannan and Warnow [43] showed the polynomial time reductiothe oppo-
site direction: from theTriangulating Vertex Colored Graph Problem to
the Character Compatibility Problem, thus establishing that the two prob-
lems are equivalent. This result was later used by Bodlaeeidal. [9] to show
that theCharacter Compatibility Problem is NP-complete. Even though the
Character Compatibility Problem is hard in general, there are efficient algo-
rithms when one or more of the problem’s natural parameterfxad: n the number
of taxonomic unitsk the number of characters, anthe maximum number of states
per character. Later on we will see how to apply the Bunemtiigerem to derive
a polynomial time solution for two charactéts= 2. For three characters there is a
series of algorithms that run in linear time [43, 41, 10]. Bdbitrary fixedk there
is anO(rk 1 kF+1 + nk?) algorithm due to McMorrigt al.[51]. When the number
of character states is bounded the problem can also be seffieiéntly. There is a
simple linear time algorithm to test if any number of binahatacters is compatible
due to Gusfield [38]. For four-state characters there i©an’k) algorithm due
to Kannan and Warnow [44]. For arbitrary fixedthere is anO (23" (nk3 + k*))
algorithm due to Agarwala and Fernandez-Baca [2].

The Buneman’s theorem can be used to readily derive a wellvkrtest for
checking whether a pair of binary characters is compatible test is attributed to
E.O.Wilson [69]; it says that a pair of binary charactersampatible if and only



Xiv

if there does not exist a set of four taxa having all possibiracter state$)0, 01,
10, and11. The same test can be derived through application of the iBané
theorem. According to the theorem a pair of binary charadtecompatible if and
only if the corresponding partition intersection candsgiangulated. As there are
only two binary characters the partition intersection grépbipartite and each set
of the bipartition contains two vertices (see for examplguFé 1.4 (c)). Such a
graph is either acyclic and therefore can be trivialfriangulated, or it contains
a square and therefore does not havetaangulation as any attempt to eliminate
the square would add an edge between two vertices of the salore The square
in the partition intersection graph corresponds to theqares of the four taxa with
all possible combinations of character valugg;, 01, 10, and 11, where00, for
example, means that both characters have state “0”. The afduilipy test can be
extended to a pair of characters with more than two states 2). In this case the
partition intersection graph would still be bipartite ahd humber of vertices in each
bipartition isr. It can be easily shown that this graph carciigangulated if and only
if it is acyclic. Therefore testing compatibility of two ctaters reduces to testing
whether the partition intersection graph is acyclic whieh be done efficiently, for
example using any of the graph search algorithms such as BBE®[17].

1.3.2 Character Stability

Assume that we are dealing with a set of characters whichiffreutt to gain but
relatively easy to lose. A classic example of such charaetey introns [23]. Introns
are non-coding DNA sequences that interrupt the flow of a gedéng sequences
in eukaryotic genes. They are remarkably conserved betsem® lineages (e.g.
between Arabidopsis and Human), but they are lost at a signifirate in other
organisms (e.g. Worm) [58]. Parsimony methods applied tmmns produced an
incorrect tree [58] indicating that the data contains naidlag characters. One way
of eliminating such misleading characters is to restritgrdton to a maximum set
of compatible characters. However, under the conditiontttecharacters are hard
to gain but are frequently lost, a large enough set of corbfgatharacters may not
exist. To address this problem Przytycka [56] proposed agmwistency criterion
calledstability criterion

The definition of the stability criterion is phrased as a @mpof a graph closely
related to the partition intersection graph and calledharacter overlap graph A
character overlap graph for a set of taxa is a grépk (V, E), whereV is a set of
characters, anfl, v) € E if there exists a taxoff’ in the set such that bothandv
are present if’. Note that the character overlap graph is simply a subgréfteo
partition intersection graph for a set of binary charactieas is induced by the set of
characters in state “1”.

To motivate the concept of stability, consider a set of ctimra A, B, C, D and
a set of four taxa described respectively by character:paitsB), (B, C), (C, D),
and (D, A). That is the first taxon has charactetsand B in state “1” (and the
rest in state “0”), second and C' in state “1”, and so on. In such a case the
corresponding character overlap graph is simply a squaeeKgure 1.5(a)). There
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Fig. 1.5 The two possible (up to symmetry) topologies for an evohaiy tree for four
taxa containing respectively characte(si, B), (B, C), (C, D) and(D, A). In each case
one pair of characters has to change state twice and theisele€such pair determines the
topology of the tree.

are two possible topologies for the evolutionary tree fig et of taxa as illustrated
in Figures 1.5(b)-(c). The number of character changesi@dly each topology is
the same. However, in the first case charactBrand D, have to change their state
twice (and at least three of these character changes haead@létions) while in the
second case charactérsand A have to change their state twice. If we knew which
pair is more preserved in a given lineage relative to therqibg&, we would be able
to select the more likely topology. Similar situation occwhen we consider a larger
cycle. This motivates the following concept of stability.

We say that a character sableif it does not belong to a chordless cycle in
the character overlap graph. Otherwise we say that theligtatii the character
is challengedandnumber of challengeis equal to the number of chordless cycles
to which the character belongs. Note that the stabilityedion can also identify
characters which are preferentially conserved in one ¢jadaut lost in many other
lineages as stability of such characters is likely to belehgkd by other characters.

Directly from the property of stability, we observe that thet of characters is
stable only if the corresponding character overlap gramiédal. In particular, it
can be easily shown that a set of characters such that eaeittdrds gained at most
once and lost at most once (called in [p@&rsistent charactejss stable [56]. Note
that even the persistency criterion is significantly lesagent than the compatibility
criterion discussed before as it allows for two changes dfaaacter state.

Unfortunately, the problem of finding the minimum number @ides whose
removal leaves a graph chordal is NP complete [47]. To goratthis problem, [56]
use a simple heuristic. Namely, rather than consideringtakdless cycles, they
considered only squares. The squares were then elimingtacdybeedy algorithm
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that iteratively removed characters belonging to the lsirgember of squares. After
all squares are removed, they applied the Dollo parsimdmyr{taximum parsimony
model that does not allow for multiple insertions of the saaracter) to construct
the evolutionary tree based on the remaining characters.

The utility of a variant of this approach has been demoredréty using it to
construct the evolutionary tree from intron data compilgdRmgozinet al. [58].
This data contains information about introns found in covesg (and orthologous)
genes of eight fully sequenced organismsabidopsis thaliangAt), Homo sapiens
(Hs), C.elegangCe), Drosophila melanogastefDm), Anopheles gambaifAg),
Saccharomyces cerevisiéec), Schizosaccharomyces pon{8p), andPlasmodium
falciparum(Pf). Introns are identified by their starting position wittspect to the
coding sequence. The data contains 7236 introns; howevst ofichese introns
are observed in one organism only and thus are not informathfter eliminating
these single-organism entries, 1790 introns were left. ri@éfitron patternto be
a 0/1 vector of length eight which defines, for a given intrahjch species have
that intron and which do not. Note that with eight speciesatae2® — 9 different
intron patterns (the subtraction corresponds to the assomihat each intron of
interest must be in at least two species). Thus, some patieerrepresented multiple
times. The patterns that appear significantly more often ih@xpected by chance
are considered to be more informative. kgtbe the number of times patteins
observed in the intron data, amd expected number of occurrences of the pattern
by chance. Define; = Z— to be the significance of the intron pattern Let S;
be the number of squares in which an intron with patteis involved. In this
setting, the greedy square removal algorithm was set to verteratively intron
patterns that maximize the valu"é This provides a trade off between maximizing
the number of removed squares and minimizing the signifeeafcthe removed
intron patterns. The resulting evolutionary tree was ciast with the Coelomata
hypothesis ([1, 8, 70, 16]). In contrast, the compatibidititerion failed to produce
a meaningful tree in this case. The counterpart to the Cad¢mimypothesis is the
Ectysozoa hypothesis ([3, 48, 55, 34, 60]) (see Figure 1.6).

1.4 FORMATION OF MULTI-PROTEIN COMPLEXES

The complexity in biological systems arises not only fromeas individual protein
molecules but also from their organization into system$wilmerous interacting
partners. In fact, most cellular processes are carriedyutuiti-protein complexes
groups of proteins that bind together to perform a specifik.t&ome proteins form
stable complexes, such as the ribosomal complex that ¢smdimore than 80 pro-
teins and four RNA molecules, while other proteins form siant associations and
are part of several complexes at different stages of a eelfubcess. A better under-
standing of this higher-order organization of proteins ioverlapping complexes is
an important step towards unveiling functional and evohiry mechanisms behind
biological networks.
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Fig. 1.6 Three tree topologies for organismArabidopsis thaliana(At), Homo sapi-
ens(Hs), C.elegangCe), Drosophila melanogastgbm), Anopheles gambai@g),
Saccharomyces cerevisi#gc), Schizosaccharomyces pom(is®), andPlasmodium
falciparum(Pf) a) The incorrect Dollo parsimony tree computed fromdntdata b) The tree
consistent with Coelomata hypothesis. This is also exdletlyree obtained after applying the
squares removal procedure. c) The tree consistent withdéedw hypothesis.

Data on protein interactions are collected from the studydi¥idual systems, and
more recently through high-throughputexperiments. Thezenany types of protein
interactions, but in our quest to understand the dynamiesuifi-protein complex
formation we are mostly interested in physical proteinriatéions and interactions
through being a member of the same protein complex, whichrieéyoreview here.

There is a physical interaction between a pair of proteirthefy come into a
close contact or bind each other. High-throughput discoeérphysical protein
interactions is based on an experimental technique cgbedt two hybrid'Y2H)
[24]. To determine whether a pair of proteind,and B, are able to physically
interact, A is fused to a DNA binding domain ang is fused to a transcription
activation domain. Physical interaction betweé¢mnd B brings the DNA-binding
domain and the transcription activation domain in proxynwhich activates the
transcription of the corresponding gene calladgorter gene The expression level
of the reporter gene is monitored and serves as a measureysitghinteraction
between proteingl and B. This technique was applied on a genome-wide scale to
map physical protein interaction maps for several modehoigms, most notably
Saccharomyces cerevisip&2, 67].

A pair of proteins may not physically interact but may stid members of the
same protein complex. High-throughput discovery of thigetgf protein interaction
is based on an experimental technique catiéediem affinity purification followed by
mass spectromet§fAP/MS) [57]. In the TAP/MS approach, a protein of interest
which is called aait, is tagged and used as a “hook” to pull out proteins that form a
complex with it. These proteins are then identified by masstspmetry techniques.
The TAP/MS approach was used not only to map the interactérBaccharomyces
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cerevisiad40, 30, 29, 46], but also to study protein complexes invdlivedifferent
signaling pathways [12].

Protein interactions are routinely represented by a grapgdrotein interaction
network with vertices being the proteins and edges being the ictierss. These
graphs offer a static view of protein interactions in thé,@len though some proteins
change their interacting partners and participate in dfieprotein complexes. Can
the topology of inherently static protein interaction netkw be used to elucidate
the temporal order of dynamic multi-protein complex forioa® In this section we
review two such attempts: Farach-Col&tral. [22] used interval graphs to study the
way in which various proteins join the ribosome maturatiathgvay, Zotenket al.
[72] used chordal graph and cographs to study the order inohwldrious complexes
are formed during cell signaling and other cellular proesss

1.4.1 Ribosomal Assembly

Ribosomes are massive molecular machines that are the plajers in protein
synthesis, they use a messenger RNA template to produceypgpbide chain of
newly created protein molecule. In eukaryotic cells ribass consists of two sub-
units, the so called 40S (small) and 60S (large) particléssivtogether account for
four ribosomal RNAs and around 80 ribosomal proteins. Repssteomic studies
in Saccharomyces cerevisigave identified around 200 auxiliary proteins that are
involved in the assembly of ribosomal subunits but are ndtqgfanature ribosomes.
The ribosome synthesis is believed to proceed in an ordetlyyay, theribosome
assembly pathwawpnd even though the main players of the pathway are knatte, li
is known about the order in which these proteins join thewath For a mini-review
see [21].

Farach-Colton and colleagues [22] proposed an intervaleinmdrepresent the
assembly pathway of the 60S ribosomal particle. In this rhadewuxiliary protein
“enters” the pathway at some point and “leaves” the pathwayatter point to never
enter the pathway again. The model further assumes thatteipimarticipates in
the pathway through binding to other proteins currenthhimpathway, therefore the
assembly line can be thought of as an evolution of one pra@mplex to which
proteins bind as they enter the pathway and from which prstdissociate as they
leave the pathway. Under this model the protein interaatietwork that spans the
auxiliary proteins involved in the pathway should be anrvaiegraph: each auxiliary
protein is an interval and two proteins interact if and offilshieir interval overlap.
Therefore the protein interaction network can be used tonstcuct the order in
which the auxiliary proteins join the pathway.

Unfortunately, even if the proposed model captures cdyrélse ribosome as-
sembly mechanism, experimental errors and incompletesfggotein interaction
data may make the protein interaction network loose itsvategraph property. To
overcome this problem the authors use a variant of the rawitiep LexBFS algo-
rithm [18] to produce an ordering of vertices in the proteiteraction network. The
algorithm uses several iterations/sweeps of the LexBF8ritthgn, where the first
LexBFS sweep starts from an arbitrary vertex of the graphewmly subsequent
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LexBFS sweep uses the orderings produced by the previoasigies to choose the
start vertex and break ties. If the network is an intervapgréhen the ordering
produced by the algorithm is an I-ordering. If, on the othandh the network is
not an interval graph then the ordering as a whole won’t be@mléring but it will
induce an I-ordering on the vertices of some interval suttlycd the network; which
subgraph would be correctly ordered depends on the orddrichwthe vertices of the
network are encountered by the algorithm. Thus, the autugrgests that computing
an l-ordering of vertices of the graph is a reasonable steprits reconstruction the
order in which the auxiliary proteins join the pathway.

The authors tested their approach on the protein interangtwork spanning 96
auxiliary proteins involved in the assembly of the 60S gteti As part of the interac-
tion data comes from TAP/MS experiments, it captures ortraction between the
25 bait proteins and other auxiliary proteins ifitax 25 protein interaction matrix.
The rows/columns of the matrix were randomly permuted amgised as an input
to the multi-sweep LexBFS algorithm. The experiment wa$quared 5000 times
and the rank of each protein in each of the 5000 orderings vesrerded. Even
though the input graph is not an interval graph only two défe orderings emerged,
which are denoted b§, andO.. If an ordering of vertices is close to an I-ordering
then the absolute difference in rank between any pair ofcadjavertices can not be
arbitrarily large. Therefore, the authors establish digance of the two discovered
orderings by the average difference in rank over two setsaiém interactions: a set
of protein interactions comprising the network and thusidgethe algorithm, and a
set of protein interactions not seen by the algorithm. Thkars found that for both
seen and unseen interactions the average difference féx;taadQ; is significantly
lower than average differences obtained with: (i) ordesipgpduced by randomly
permuting the proteins; (ii) orderings computed by the atgm on random graph
having the same degree distribution as the original inpalgr

1.4.2 Multi-protein Complex Formation During Cell Signalling

In order to adapt to their environment, cells have to detadt @spond to a vast
variety of external stimuli. The detection and translatibthese stimuli to a specific
cellular response is achieved through a mechanism csitied! transduction pathway
orsignaling pathwayThe general principles of signal propagation through byway
are common to almost all signaling pathways. First, an erthalar stimulus, usually
a chemical ligand, binds to a membrane bound receptor profdie energy from
this interaction changes the state of the receptor prdtaiis,activating it. The active
receptor is able to pass the signal to #féector systenthat generates the cell’s
response. A variety of proteins, the so-calgghalling proteins carry information
between the receptor protein and the effector systeratein kinasesfor example,
are special enzymes that add a phosphate group to certainge®f certain proteins
through a process callgdhosphorylationthus activating or suppressing the protein’s
ability to interact with other proteins.

The pattern of protein interaction during cell signalinguisexcellent example of
transient protein interactions and dynamic complex foromatFor example, consider
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a sequence of events in one of the best studied signalingvpgsh the mating
pheromone signaling pathway 8accharomyces cerevisia@or more information
see a review by Bardwell [4]). There are two mating types afsyeells. When a
yeast cellis stimulated by a pheromone secreted by a call@bposite mating type, it
undergoes a series of physiological changes in preparfationating, which include
significant changes in gene expression of about 200 gerieaten growth towards
the partner, and changes in the cell-cycle. Signal propamgtitrough the pathway is
achieved through interaction of some 20 proteins, a schemggiresentation of the
pathway and description of corresponding protein intévastare given in Figure 1.7.

Research efforts required to obtain the amount of detailemMedge about a
signaling pathway as is currently available for the matihgnomone pathway are
enormous. Can the readily available high-throughput érpertal data on protein
interactions be used to elucidate some information abaup#thway, such as the
order of complex formation during signal propagation? le@ent work Zotenket
al. [72] have proposed a graph-theoretic method, Complex @uédecomposition
(COD), that tries to recover the order of protein complexrfation from the topology
of protein interaction network that spans the pathway camepts. (The pathway
components can be obtained from literature. Alternatiyalyative pathway compo-
nents can be automatically extracted from genome-widejpratteraction networks
by computational methods [65, 62].)

The main idea behind the COD method, which is depicted in reigu8, is
to provide a representation of the protein interaction etwhat is analogous to
a clique tree representation for chordal graphs, but in winicdes are cographs
(representing functional groups) rather than maximalugi)(representing protein
complexes). Afunctional groupis either a protein complex (maximal clique in the
protein interaction network) or a set of alternative vat$aof such complex. Such
a representation accounts for two phenomena clearlyritlitest in the pheromone
signaling pathway described above: (i) the dynamic comfdemation does not
always follow a linear pathway but rather has a tree strectuhere various branches
correspond to the activation of different response systéimshere may be several
variants of a protein complex, such as MAPK complex centat#uk scaffold protein
which may include eithekK S.S1 or FU S3 proteins but not both; It shoud be noted
that cographs and their modular decomposition were prsijaised by Gagneuat
al. to expose the hierarchical organization of protein comgsd7].

If a set of functional groups in a network were known then dacistional group
could be turned into a clique through addition of missingesdgnd clique tree
construction algorithm could be applied to the modified ek As the functional
groups are not known in advance, the authors propose a tiefwistheir automatic
delineation, where a set of edges is added to the networlasthid maximal cliques
in the modified network correspond to putative functionalugrs.

The COD method’s edge addition strategy and its biologiaativation builds on
a functional interpretation of weak siblings in the netwdRecall that a pair of nodes
in a graph are weak siblings if they are not adjacent to eduoér diut are adjacent to
exactly the same set of nodes. Interms of protein intenaci@works, weak siblings
are proteins which interact with the same set of proteinslbutot interact with each
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Fig. 1.7 A schematic representation of the key components of theophamne signaling
pathway assembled from information in [49, 37, 4]. A pherompeptide binds a G-protein
coupled receptor or GPCR (STE2/STE3). Activated receptmisband activates a trimeric
G-protein: G, subunit (GPA1),Gg subunit (STE4) andx, subunit (STE18). The flow
of information then proceeds via a three-tiered mitogeivaed protein kinase (MAPK)
cascade and results in activation of STE12 transcriptiotofeand subsequent upregulation
of about 200 genes. The MAPK cascade also activates FARgiprothich is hypothesized
to trigger a(G cell-cycle arrest through an interaction with CDC28, a mastgulator of
the cell-cycle. The MAPK cascade consists of three protgiades STE11, STE7 and either
FUS3 or KSS1, which activate each other sequentially tHiqigsphorylation. Thus STE11
activates STE7, which in turn activates either FUS3 or KSBik phosphorylation process is
enhanced through a presence of a scaffold protein STEShwalmcls and thus co-localizes all
three components of the MAPK cascade. Activated FUS3 andlf8&eins in turn bind their
substrates, DIG1/DIG2/STE12 complex and FARL1 protein. tAeobranch of the pathway,
which includes proteins STE4, STE18, FAR1, CDC24, CDC44,BEML1 is responsible for
triggering a “polarized growth towards the mating partn@rpolarization response.
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Original Graph, G Graph modification Modified Graph, G*
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with identical set of neighbors
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(if any) by adding a (restricted) set
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with similar set of neighbors
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(O Protein — — - Fill-in edge -!» Maximal clique |

Fig. 1.8 An illustration of the Complex Overlap Decomposition (CODgthod. An edge,
(3,4), connecting a pair of weak siblings is added to the graph.|4fiédge between proteins
5and 8 is added to eliminate all five 4-cycles in the graf#:6, 8, #, {1,5,7,8,{2,5, 7, 8,
{1,5,6,8,and{2, 5, 6, 8. Ifthe modified graph is chordal, all clique tree represtois are
computed and each such representation is extended Teeaof Complexegpresentation
of the original graph. The Tree of Complexes is constructgorbjecting each maximal clique
in the modified graph(*, to a functional group in the original graghi. For example, a four
node maximal clique{1, 2, 5, 8},in G* is projected to a four node functional groupGh by
removing a fill-in edge 5, 8). Each functional group is represented by a Boolean exjmessi
such a1 A 2) A (5 V 8), which means that the functional group contains two vasiafia
complex,{1,2,5} and{1, 2, 8}. This figure is reproduced from [72].
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other. In particular, proteins that can substitute for eztbler in a protein interaction
network may have this property. Similarly, weak siblingsgmarrespond to a pair of
proteins that belong to the same protein complex but areamotected by an edge due
to missing data or an experimental error. Therefore, theit@first connects every
pair of weak siblings by an edge. If the modified graph is natrdal an additional
set of edges that connect pairs of proteins close to being siblings is added; each
such edge is a diagonal in one or meares chordless cycles of length four, in
the graph. The heuristic finds a minimum cost set of diagotiaseliminates all
the squares in the graph, where the cost of a diagonal isselygproportional to the
amount of overlap between the neighborhoods of its endpoint

If the modification step succeeds, i.e., the modified graphasdal, all the clique
tree representations of the modified graph are constructedheen extended to the
Tree of Complexes representatiafghe original graph. The COD algorithm keeps
track of all the edge additions and uses this information ébindate functional
groups by projecting each maximal clique onto the origiretivork and removing
all introduced edges contained in the clique. For exampléhé modified graph of
Figure 1.8 a maximal clique with four noddd,, 2, 5, 8}, is projected to a functional
group by removing an edge connecting protesmds. This functional group contains
two variants of a protein compleX,1,2,5} and {1, 2,8}, which are compactly
represented by the Boolean expressiom 2) A (5 Vv 8) . If, on the other hand,
the modified graph is not chordal, the COD method stops witipooducing the
representation.

The authors demonstrated the effectiveness of their apprbg decomposing
protein interaction networks for two signaling pathwayse tmating pheromone
signaling pathway and the NF-kB signaling pathway. Here wphathe COD
method to the pheromone signaling pathway, where the pgtbamponents were
taken from [4] (Table 1) and protein interactions that sgengathway components
from the DIP database [61] (version 01/16/2006; core sentdractions). The
network is shown in Figure 1.9(a). Since proteins STE2/S&E3disconnected
from the rest of the components, we have removed them fronméh&ork in our
analysis. The COD method adds three diagonals to elimirlater squares in
the network: (STE4,BEM1), (FUS3, KSS1), and (GPA1, STER)ich results in
twelve functional groups listed in Figure 1.9 along with tteeresponding Boolean
expressions. There are twelve Tree of Complexes repragargdor this protein
interaction network one of which is shown in Figure 1.9(b)l tAe representations
agree onthe interconnection pattern between functiooalgs,B — £, H, andJ — L.
The difference between various tree variants comes fromfhaational groups4,

F — G, and! are connected to the rest of the tree: (i) functional grdupan be
attached either throug, C), or (4, B), or (A, J); (i) functional groupI through
(I, E), or (I, D); (iii) functional groupF' through(F, E) or (F, H).

Compare the representation in Figure 1.9(b) to the schemggdresentation of the
pheromone signaling pathway shown in Figure 1.7. Using pnbgein interaction
information the COD method was able to recover two branchéseopathway, the
MAPK cascade branch and the polarization branch. The MAP¥Cade branch
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Protein-Protein Interaction Network Tree of Complexes Representation
O eem:euky O epat:icpy @stE12:(G)
cocz2a: Wk @ kss1:(eFGHy O sTE18:{A}
O cpcaz: (KL} sTE4:{ABCJ} @ sTE20:{}
O piet,pic2:(Fep O sTES:{BCDEH @ STES0: {1}
O FART: {J.K} @ stEr:{Hy

@ rusa:(DEFH O STE11:{DE}
1

®sTE2 ®5TES ]
(@) =

A = STE4ASTE18
B = (BEM1v STE4) A STES

C = (GPA1v STE5) A STE4

D = (STE5V GPA1) AFUS3 A STEI11

E = (FUS3V KSS1) A STE5A STE11 H = (FUS3V KSS1) A STE5 A STE7
F = (FUS3Vv KSS1)ADIG1ADIG2 G=KSS1ADIG1ADIG2ASTE12
J = (BEM1V STE4) A\CDC24 AFAR1 [ = STE5 A STE11 A STE50
K = BEM1ACDC24 AFAR1 ACDC42

L =BEM1ACDC24ACDC42 A STE20

(b)

Fig. 1.9 The mating pheromone signaling pathwafa) The protein interaction network
for the components of the pathway. The network was drawn Réfek [5]. (b) One of
the twelve possible Tree of Complexes representationdhonétwork.The activation of the
pathway corresponds to nodé in the tree which contains th&s (STE4) protein. From
node A, the Tree of Complexes splits into two branches. One braooghly corresponds
to the MAPK cascade activated response, while another bremghly corresponds to the
polarization response. The MAPK cascade branch spans éalasnin the treef, D, E, and
H. The activation of transcription factor complex ByJ 53 and K S'S1 is in nodesF and
(. The polarization branch spans nodesK and L.
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spans four nodes in the treé; D, I/, andH. The polarization branch spans nodes
J, K andL.
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